How Martian meteorites helped scientists decode the red planet’s geology


Despite the pandemic, NASA is on track to launch its Mars rover, Perseverance, this July from Cape Canaveral, Florida. Its central mission will be to search for evidence of previous life on Mars.

An exciting component of the rover will be a specialized drill that will collect rock and soil samples to be cached on the surface of Mars. If all goes according to plan, the cache will be retrieved by a future mission in 2031 and, for the first time, material from Mars will be brought back to Earth for analysis.

As someone who studies Martian geology, I’m definitely looking forward to 2031 but am grateful I don’t have to wait 11 years to study rocks from Mars. Martian rock samples are already here on Earth in the form of meteorites.

How rocks from Mars end up on Earth

All Martian meteorites were formed millions of years ago, when asteroids and other space rocks collided into the surface of Mars with enough force to eject pieces of its crust into orbit. Sometimes these rock fragments, floating in outer space, enter Earth’s atmosphere, where gravity pulls them in.